The Cauchy problem in one-dimensional nonlinear viscoelasticity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Transitions in One-Dimensional Nonlinear Viscoelasticity: Admissibility and Stability

For the motion of a one-dimensional viscoelastic material of rate type with a non-monotonic stress-strain relation, a mixed initial boundary value problem is considered. A simple existence theory is outlined, based on a novel transformation of the equation into the form of a degenerate reaction-diffusion system. This leads to new results characterizing the regularity of weak solutions. It is sh...

متن کامل

The Cauchy Problem for a One Dimensional Nonlinear Elastic Peridynamic Model

This paper studies the Cauchy problem for a one-dimensional nonlinear peridynamic model describing the dynamic response of an infinitely long elastic bar. The issues of local well-posedness and smoothness of the solutions are discussed. The existence of a global solution is proved first in the sublinear case and then for nonlinearities of degree at most three. The conditions for finite-time blo...

متن کامل

On a Nonlinear Inverse Problem in Viscoelasticity

We consider an inverse problem for determining an inhomogeneity in a viscoelastic body of the Zener type, using Cauchy boundary data, under cyclic loads at low frequency. We show that the inverse problem reduces to the one for the Helmholtz equation and to the same nonlinear Calderon equation given for the harmonic case. A method of solution is proposed which consists in two steps : solution of...

متن کامل

Wellposedness of Cauchy problem for the Fourth Order Nonlinear Schrödinger Equations in Multi-dimensional Spaces

We study the well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations i∂t u=−ε u+ 2u+ P (( ∂ x u ) |α| 2, ( ∂ x ū ) |α| 2 ) , t ∈R, x ∈Rn, where ε ∈ {−1,0,1}, n 2 denotes the spatial dimension and P(·) is a polynomial excluding constant and linear terms. © 2006 Elsevier Inc. All rights reserved.

متن کامل

One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem

The Cauchy problem for one-dimensional flow of a compressible viscous heat-conducting micropolar fluid is considered. It is assumed that the fluid is thermodynamically perfect and polytropic. A corresponding initial-boundary value problem has a unique strong solution on ]0, 1[×]0, T [, for each T > 0. By using this result we construct a sequence of approximate solutions which converges to a sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1985

ISSN: 0022-0396

DOI: 10.1016/0022-0396(85)90147-0